Comparing powers and symbolic powers of ideals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Powers and Symbolic Powers of Ideals

We develop tools to study the problem of containment of symbolic powers I(m) in powers I for a homogeneous ideal I in a polynomial ring k[P ] in N + 1 variables over an arbitrary algebraically closed field k. We obtain results on the structure of the set of pairs (r, m) such that I(m) ⊆ I. As corollaries, we show that I2 contains I(3) whenever S is a finite generic set of points in P2 (thereby ...

متن کامل

Generalized Test Ideals and Symbolic Powers

In [HH7], developing arguments in [HH5], Hochster and Huneke used classical tight closure techniques to prove a fine behavior of symbolic powers of ideals in regular rings. In this paper, we use generalized test ideals, which are a characteristic p analogue of multiplier ideals, to give a generalization of Hochster-Huneke's results.

متن کامل

Links of symbolic powers of prime ideals

In this paper, we prove the following. Let (R,m) be a Cohen-Macaulay local ring of dimension d ≥ 2. Suppose that either R is not regular or R is regular with d ≥ 3. Let t ≥ 2 be a positive integer. If {α1, . . . , αd} is a regular sequence contained in m, then (α1, . . . , αd) : m t ⊆ m. This result gives an affirmative answer to a conjecture raised by Polini and Ulrich.

متن کامل

Bounding Symbolic Powers via Asymptotic Multiplier Ideals

For a radical ideal I, the symbolic power I is the collection of elements that vanish to order at least p at each point of Zeros(I). If I is actually prime, then I is the I-associated primary component of I; if I is only radical, writing I = C1 ∩ · · · ∩Cs as an intersection of prime ideals, I = C (p) 1 ∩ · · · ∩ C (p) s . The inclusion I ⊆ I always holds, but the reverse inclusion holds only i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Geometry

سال: 2010

ISSN: 1056-3911,1534-7486

DOI: 10.1090/s1056-3911-09-00530-x